翻訳と辞書
Words near each other
・ Class Trip
・ Class Trip (album)
・ Class U special wagon
・ Class variable
・ Class War
・ Class war
・ Class War (album)
・ Class Warfare
・ Class Wargames
・ Class Z Reserve
・ Class, Bureaucracy, and Schools
・ Class-4 telephone switch
・ Class-5 telephone switch
・ Class-based programming
・ Class-based queueing
Class-D amplifier
・ Class-responsibility-collaboration card
・ Class-size reduction
・ Class-T amplifier
・ Class40
・ CLASSA
・ ClassDojo
・ Classe
・ Classe di ferro
・ Classe Mini
・ Classe mista
・ Classe préparatoire aux grandes écoles
・ Classe Tous Risques
・ Classe, ancient port of Ravenna
・ Classen (surname)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Class-D amplifier : ウィキペディア英語版
Class-D amplifier

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices (transistors, usually MOSFETs) operate as electronic switches, instead of as linear gain devices as in other amplifiers. The signal to be amplified is a train of constant amplitude pulses, so the active devices switch rapidly back and forth between a fully conductive and nonconductive state. The analog signal to be amplified is converted to a series of pulses by pulse width modulation, pulse density modulation or other method before being applied to the amplifier. After amplification, the output pulse train can be converted back to an analog signal by passing through a passive low pass filter consisting of inductors and capacitors. The major advantage of a class-D amplifier is that it can be more efficient than analog amplifiers, with less power dissipated as heat in the active devices.
Output stages such as those used in pulse generators are examples of class-D amplifiers. However, the term mostly applies to power amplifiers intended to reproduce signals with a bandwidth well below the switching frequency.
==Basic operation==
Class-D amplifiers work by generating a variable duty cycle square wave of which the low-frequency portion of the spectrum is essentially the wanted output signal, and of which the high-frequency portion serves no purpose other than to make the wave-form binary so it can be amplified by switching the power devices.
A passive low-pass filter removes the unwanted high-frequency components, i.e., smooths the pulses out and recovers the desired low-frequency signal. To maintain high efficiency, the filter is made with purely reactive components (inductors and capacitors), which store the excess energy until it is needed instead of converting some of it into heat. The switching frequency is typically chosen to be ten or more times the highest frequency of interest in the input signal. This eases the requirements placed on the output filter. In cost sensitive applications the output filter is sometimes omitted. The circuit then relies on the inductance of the loudspeaker to keep the HF component from heating up the voice coil. It will also need to implement a form of three-level (class-BD) modulation which reduces HF output, particularly when no signal is present.
The structure of a class-D power stage is essentially identical to that of a synchronously rectified buck converter (a type of non-isolated switched-mode power supply (SMPS)). Whereas buck converters usually function as voltage regulators, delivering a constant DC voltage into a variable load and can only source current (one-quadrant operation), a class-D amplifier delivers a constantly changing voltage into a fixed load, where current and voltage can independently change sign (four-quadrant operation). A switching amplifier must not be confused with linear amplifiers that use an SMPS as their source of DC power. A switching amplifier may use any type of power supply (e.g., a car battery or an internal SMPS), but the defining characteristic is that the amplification process itself operates by switching.
Theoretical power efficiency of class-D amplifiers is 100%. That is to say, all of the power supplied to it is delivered to the load, none is turned to heat. This is because an ideal switch in its on state would conduct all the current but have no voltage loss across it, hence no heat would be dissipated. And when it is off, it would have the full supply voltage across it but no leak current flowing through it, and again no heat would be dissipated. Real-world power MOSFETs are not ideal switches, but practical efficiencies well over 90% are common. By contrast, linear AB-class amplifiers are always operated with both current flowing through and voltage standing across the power devices. An ideal class-B amplifier has a theoretical maximum efficiency of 78%. Class A amplifiers (purely linear, with the devices always "on") have a theoretical maximum efficiency of 50% and some versions have efficiencies below 20%.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Class-D amplifier」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.